

UAN

### Spin squeezing on the caesium clock transition: Interferometric quantum non-demolition measurement on cold atoms

#### Daniel Oblak

Danish National Research Foundation Centre for Quantum Optics (Quantop), Niels Bohr Institute, University of Copenhagen



#### Current

Ulrich Busck Hoff Patrick Windpassinger Daniel Oblak Jürgen Appel Niels Kjærgaard Eugene Polzik

#### Previous

Mark Saffman Carlos Garrido Alzar Plamen Petrov Jens Lykke Sørensen Jens Mikkelsen Anton Vershovski Wolfgang Tittel





### This presentation will contain:

- Motivation and applications
- Atomic system, interferometer and quantum variables
- QND interaction



- Experimental setup and characterisation
- Measurements of atomic noise
- Things to come (soon)





#### What's it all good for?

## Increased sensitivity in spectroscopy<sup>1,2,3</sup>

Atomic magnetometers Microwave fountain clocks Optical lattice clocks

Quantum memory<sup>4</sup> Increased fidelity



Non classical states for quantum information

Qubit system



- 1. Auzinsh et al. PRL **93** (17) 173002
- 2. Wineland, Bollinger, Itano, and Heinzen. PRA **50** (1) 67
- 3. Andre, Sørensen, and Lukin. PRL 92, 230801
- 4. *Hammerer, Mølmer, Polzik, and Cirac.* PRA **70** 044304



Pseudo-spin on the Bloch sphere<sup>1,2</sup>



Atomic pseudo-spin  $\hat{j}_{x}^{(k)} = \frac{1}{2} (\hat{\sigma}_{34}^{(k)} + \hat{\sigma}_{43}^{(k)})$   $\hat{j}_{y}^{(k)} = \frac{-i}{2} (\hat{\sigma}_{34}^{(k)} - \hat{\sigma}_{43}^{(k)})$   $\hat{j}_{z}^{(k)} = \frac{1}{2} (\hat{\sigma}_{33}^{(k)} - \hat{\sigma}_{44}^{(k)})$ 

Collective operators

 $\hat{J}_i = \sum_{k \in V} \hat{j}_i^{(k)}$ 

 $\hat{N} = \sum \hat{\sigma}_{33}^{(k)} + \sum$ 

 $k \in V$ 

 $\sum \hat{\sigma}_{_{44}}^{\scriptscriptstyle (k)}$ 

Coherent spin state

$$\left|\Psi\right\rangle_{k} = \frac{1}{\sqrt{2}} \left|3\right\rangle_{k} + \frac{1}{\sqrt{2}} \left|4\right\rangle_{k}$$

Bloch sphere - qubit



Wineland, Bollinger, Itano, and Heinzen. PRA **50** (1) p.67
 Saffman Oblak, Appel, & Polzik et. al. preprint available from speaker





## Expectation values<sup>1,2</sup>





Coherent spin state

 $\left|\Psi\right\rangle_{k} = \frac{1}{\sqrt{2}} \left|3\right\rangle_{k} + \frac{1}{\sqrt{2}} \left|4\right\rangle_{k}$ 

Bloch sphere - qubit







Wineland, Bollinger, Itano, and Heinzen. PRA **50** (1) p.67
 Saffman Oblak, Appel, & Polzik et. al. preprint available from speaker



















$$i_{-} \propto \langle \hat{n}_{-} \rangle \equiv \langle \hat{n}_{3-} + \hat{n}_{4-} \rangle$$
$$= \langle \hat{n}_{3} \rangle \cos(\phi_{3} + \phi') + \langle \hat{n}_{4} \rangle \cos(\phi_{4} + \phi')$$
$$\approx 2\tilde{\kappa}_{3} \langle \hat{n}_{3} \rangle \hat{N}_{3z} + 2\tilde{\kappa}_{4} \langle \hat{n}_{4} \rangle \hat{N}_{4z}$$
$$= 2\tilde{\kappa} \langle \hat{n} \rangle \Big[ \hat{N}_{3z} - \hat{N}_{4z} \Big] = 2\tilde{\kappa} \tau \langle \hat{n} \rangle \hat{J}_{z}$$







#### An intuitive picture











## An intuitive picture



Ζ

У

Х

$$\begin{split} i_{-} &\propto \left\langle \hat{n}_{-} \right\rangle \equiv \left\langle \hat{n}_{3-} + \hat{n}_{4-} \right\rangle \\ &= \left\langle \hat{n}_{3} \right\rangle \cos(\phi_{3} + \phi') + \left\langle \hat{n}_{4} \right\rangle \cos(\phi_{4} + \phi') \\ &\approx 2\tilde{\kappa}_{3} \left\langle \hat{n}_{3} \right\rangle \hat{N}_{3z} + 2\tilde{\kappa}_{4} \left\langle \hat{n}_{4} \right\rangle \hat{N}_{4z} \\ &= 2\tilde{\kappa} \left\langle \hat{n} \right\rangle \left[ \hat{N}_{3z} - \hat{N}_{4z} \right] = 2\tilde{\kappa} \tau \left\langle \hat{n} \right\rangle \hat{J}_{z} \end{split}$$





#### An intuitive picture









## Squeezing by interaction and subsequent measurement of light pulse



Output variances

$$\left(\delta\hat{J}_{y}^{out}\right)^{2} = \left(\delta\hat{J}_{y}^{in}\right)^{2} + \tilde{\kappa}\tau\left\langle\hat{N}\right\rangle\left(\delta\hat{n}_{\perp}^{in}\right)^{2} = \frac{1}{4}\left\langle\hat{N}\right\rangle\left(1 + 4\tilde{\kappa}\tau\left\langle\hat{n}\right\rangle\right)$$

$$\left(\delta\hat{J}_{y}^{out}\right)^{2}\left(\delta\hat{J}_{z}^{out}\right)^{2} = \frac{1}{16}\left\langle\hat{N}\right\rangle^{2} \implies \left(\delta\hat{J}_{z}^{out}\right)^{2} = \frac{\frac{1}{4}\left\langle\hat{N}\right\rangle}{\left(1 + 4\tilde{\kappa}\tau\left\langle\hat{n}\right\rangle\right)}$$

QND interaction Hamiltonian

$$\begin{split} \hat{n}_{k\perp} &= -i(\hat{d}_{k1}^{\dagger}\hat{d}_{k2} - \hat{d}_{k2}^{\dagger}\hat{d}_{k1}), \quad \hat{n}_{\perp} = \hat{n}_{3\perp} + \hat{n}_{4\perp} \\ \hat{n}_{k} &= \hat{d}_{k1}^{\dagger}\hat{d}_{k1} + \hat{d}_{k2}^{\dagger}\hat{d}_{k2}, \qquad \hat{n} = \hat{n}_{3} + \hat{n}_{4} \end{split}$$

CEWQO 2008 Belgrade, Serbia

Operator input-output relations



### Squeezing by interaction and subsequent measurement of light pulse<sup>1</sup>



Output variances<sup>2</sup>

$$\left(\delta \hat{J}_{y}^{out}\right)^{2} = \left(\delta \hat{J}_{y}^{in}\right)^{2} + \tilde{\kappa}\tau \left\langle \hat{N} \right\rangle \left(\delta \hat{n}_{\perp}^{in}\right)^{2} = \frac{1}{4} \left\langle \hat{N} \right\rangle \left(1 + 4\tilde{\kappa}\tau \left\langle \hat{n} \right\rangle \right)$$

$$\left(\delta \hat{J}_{y}^{out}\right)^{2} \left(\delta \hat{J}_{z}^{out}\right)^{2} = \frac{1}{16} \left\langle \hat{N} \right\rangle^{2} \implies \left(\delta \hat{J}_{z}^{out}\right)^{2} = \frac{\frac{1}{4} \left\langle \hat{N} \right\rangle}{\left(1 + 4\tilde{\kappa}\tau \left\langle \hat{n} \right\rangle \right)}$$

Squeezing criterion<sup>3,4</sup>

$$\left(\delta \hat{J}_{z}^{out}\right)^{2} < \frac{1}{2} \left\langle \hat{J}_{x}^{out} \right\rangle = \frac{1}{4} \eta \left\langle \hat{N} \right\rangle$$

- 1. Kuzmich, Bigelow, and Mandel. Eur. Phys. Lett. 42 481
- *2. Oblak et. al.* PRA **71** 043807
- *3.* Wineland, Bollinger, Itano, and Heinzen. PRA **50** (1) 67
- 4. Kitagawa and Ueda. PRA **47** 5138





### Photos of setup

White light interferometer

Dipole trap

Optical pumping

Microwaves











### Pulsed measurement<sup>1</sup>

 $4\mu s$  pulses generated in AOM

Incident on balanced low-noise detector

Detector output recorded on digital scope

Integration over pulses (window) and further processing on PC





#### Pulsed measurement - corrections

Baseline subtraction & probe power normalisation

$$p_{j,p}^{(i)} = \rho^{(i)} \left( p_{j,p}^{(i)} - p_{j,bg}^{(i)} \right)$$

$$\rho^{(i)} = \sum_{j}^{M} \frac{P_{j,p}^{(i)}}{\frac{1}{KM}} \sum_{i,j}^{K,M} P_{j,p}^{(i)} \quad \leftarrow \text{ factor for power normalisation}$$

Reference pulse correction

$$p_{p,j}^{(i)} = p_{p,j}^{(i)} - \chi_{ref} \frac{1}{2} \left( p_{r,j}^{(i)} + p_{r,j+1}^{(i)} \right),$$
  
$$\chi_{ref} = \min \left\{ \frac{1}{K} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi \frac{1}{2} \left( p_{r,j}^{(i)} + p_{r,j+1}^{(i)} \right) \right]^2 \right\}$$
  
$$(1)$$
  
$$(1)$$
  
$$(1)$$
  
$$(2)$$
  
$$(2)$$
  
$$(2)$$
  
$$(2)$$
  
$$(2)$$
  
$$(2)$$
  
$$(2)$$
  
$$(3)$$
  
$$(2)$$
  
$$(2)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$(3)$$
  
$$($$



*1. Windpassinger, Oblak et al.* New J. Phys. **10** 053032



Pulsed measurement - noise calculation

Projection noise measurement

 $\left(\delta p_{1}\right)_{proj}^{2} = \frac{1}{k-1} \sum_{i=1}^{K} \left[p_{p,1}^{(i)}\right]^{2} \propto \frac{1}{4} \left\langle \hat{N} \right\rangle$ 

Squeezing measurement - in principle

$$\left(\delta p_{12}\right)_{sq}^{2} = \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,2}^{(i)} - \chi_{sq} p_{p,1}^{(i)} \right]^{2}$$
$$\chi_{sq} = \min_{\chi} \left\{ \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,2}^{(i)} - \chi p_{p,1}^{(i)} \right]^{2} \right\}$$

Experimental squeezing criterion

$$\left(\delta p_{12}\right)_{sq}^{2} < \frac{1}{4}\eta \left\langle \hat{N} \right\rangle = \eta \left(\delta p_{1}\right)_{proj}^{2}$$



Pulse durations:  $4\mu$ s Pulse separation:  $16\mu$ s Probe power:  $10 \ \mu$ W ~  $1.6 \ 10^8$  photons Reference power:  $50 \ \mu$ W ~  $8 \ 10^8$  photons



### Experimental parameters

Projection noise measurement

 $\left(\delta p_{1}\right)_{proj}^{2} = \frac{1}{k-1} \sum_{i=1}^{K} \left[p_{p,1}^{(i)}\right]^{2} \propto \frac{1}{4} \left\langle \hat{N} \right\rangle$ 

Squeezing measurement - in principle

$$\left(\delta p_{j}\right)_{sq}^{2} = \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi_{sq} p_{p,j+1}^{(i)} \right]^{2}$$
$$\chi_{sq} = \min_{\chi} \left\{ \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi p_{p,j+1}^{(i)} \right]^{2} \right\}$$

Experimental squeezing criterion

$$\left(\delta p_{12}\right)_{sq}^{2} < \frac{1}{4}\eta \left\langle \hat{N} \right\rangle = \eta \left(\delta p_{1}\right)_{proj}^{2}$$



Pulse durations:  $4\mu$ s Pulse separation:  $16\mu$ s Probe power:  $10 \ \mu$ W ~  $1.6 \ 10^8$  photons Reference power:  $50 \ \mu$ W ~  $8 \ 10^8$  photons



### Experimental parameters

Projection noise measurement

 $\left(\delta p_{1}\right)_{proj}^{2} = \frac{1}{k-1} \sum_{i=1}^{K} \left[p_{p,1}^{(i)}\right]^{2} \propto \frac{1}{4} \left\langle \hat{N} \right\rangle$ 

Squeezing measurement - in principle

$$\left(\delta p_{j}\right)_{sq}^{2} = \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi_{sq} p_{p,j+1}^{(i)} \right]^{2}$$
$$\chi_{sq} = \min_{\chi} \left\{ \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi p_{p,j+1}^{(i)} \right]^{2} \right\}$$

Experimental squeezing criterion

$$\left(\delta p_{12}\right)_{sq}^2 < \frac{1}{4}\eta \langle \hat{N} \rangle = \eta \left(\delta p_1\right)_{proj}^2$$



Pulse durations:  $4\mu$ s Pulse separation:  $16\mu$ s Probe power:  $10 \ \mu$ W ~  $1.6 \ 10^8$  photons Reference power:  $50 \ \mu$ W ~  $8 \ 10^8$  photons



### Experimental parameters

Projection noise measurement

 $\left(\delta p_{1}\right)_{proj}^{2} = \frac{1}{k-1} \sum_{i=1}^{K} \left[p_{p,1}^{(i)}\right]^{2} \propto \frac{1}{4} \left\langle \hat{N} \right\rangle$ 

Squeezing measurement - in principle

$$\left(\delta p_{j}\right)_{sq}^{2} = \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi_{sq} p_{p,j+1}^{(i)} \right]^{2}$$
$$\chi_{sq} = \min_{\chi} \left\{ \frac{1}{2k-1} \sum_{i=1}^{K} \left[ p_{p,j}^{(i)} - \chi p_{p,j+1}^{(i)} \right]^{2} \right\}$$

Experimental squeezing criterion

$$\left(\delta p_{12}\right)_{sq}^{2} < \frac{1}{4}\eta \left\langle \hat{N} \right\rangle = \eta \left(\delta p_{1}\right)_{proj}^{2}$$



correlated constant (e.g. intensity drifts)

correlated inear (projection noise)

correlated quadratic (e.g. sum frequency or differential intensity drifts)

uncorrelated quadratic (e.g. fast. frequency jitter)



Shot noise limited phase-sensitive measurement

## Non destructive measurements of quantum state dynamics Light shift

Observation of the reduction of quantum projection noise Limited by classical background noise QND measurement



#### Two input port interferometer setup<sup>1</sup>

Sensitivity to difference frequency of 2 colours -> narrower linewidth Reduced sensitivity to acoustic noise -> reference pulses superfluous

1.

#### No more - that should work



# Acknowledgements



#### The Danish National Research Foundation QUANTOP

European Union QAUAC QOVAQIAL QUICOV QWAP



 $\bigcirc$ 

VAN



And sorry for speaking too long...

Any questions?







Quantum and classical noise sources

Noise in output signal

shot projection garbage





Interaction cast in continuous light variables



Schwinger representation $\langle \hat{a}_{k}^{\dagger} \hat{a}_{k} \rangle = \langle \hat{n}_{k} \rangle$  $\hat{S}_{kx} = \frac{1}{2} (\hat{a}_{k}^{\dagger} \hat{b}_{k} + \hat{b}^{\dagger} \hat{a}_{k})$  $\langle \hat{a}_{k}^{\dagger} \hat{a}_{k} \rangle = \langle \hat{n}_{k} \rangle$  $\hat{S}_{ky} = \frac{-i}{2} (\hat{a}_{k}^{\dagger} \hat{b}_{k} - \hat{b}_{k}^{\dagger} \hat{a}_{k})$  $\langle \hat{b}_{k}^{\dagger} \hat{b}_{k} \rangle = 0$  $\hat{S}_{kz} = \frac{1}{2} (\hat{a}_{k}^{\dagger} \hat{a}_{k} - \hat{b}_{k}^{\dagger} \hat{b}_{k})$  $\langle \hat{S}_{kx}^{c} \rangle = \langle \hat{S}_{kz}^{c} \rangle = 0$  $\hat{n}_{k} = \hat{a}_{k}^{\dagger} \hat{a}_{k} + \hat{b}_{k}^{\dagger} \hat{b}_{k}$  $\langle \hat{S}_{ky}^{c} \rangle = \frac{1}{2} \langle \hat{n}_{k} \rangle$ 

Interaction Hamiltonian

$$\begin{split} \hat{H}_{k \text{ int}} &= \hbar 4 \tilde{\kappa}_{k} \left( \frac{1}{2} \hat{n}_{k} + \hat{S}_{kz}^{c} \right) \hat{N}_{k} \implies \\ \hat{H}_{\text{int}} &= \hbar 4 \left[ \tilde{\kappa}_{3} \left( \frac{1}{2} \hat{n}_{3} + \hat{S}_{3z}^{c} \right) \hat{N}_{3} + \tilde{\kappa}_{4} \left( \frac{1}{2} \hat{n}_{4} + \hat{S}_{4z}^{c} \right) \hat{N}_{4} \right] \end{split}$$

Operator input-output relations

$$\hat{S}_{kz}^{c,out} = \hat{S}_{kz}^{c,in} , \quad \hat{S}_{kx}^{c,out} = \hat{S}_{kx}^{c,in} + 2\tilde{\kappa}_k \tau \left\langle \hat{n}_k \right\rangle \hat{N}_k$$
$$\hat{J}_z^{c,out} = \hat{J}_z^{c,in} , \quad \hat{J}_y^{out} = \hat{J}_y^{in} + 2\tilde{\kappa}_k \tau \hat{N}_k \left( \frac{1}{2} \left\langle \hat{n}_k \right\rangle + \hat{S}_{kz}^c \right)$$



Quantum picture





$$\hat{S}_{kz}^{c,out} = \hat{S}_{kz}^{c,in} , \quad \hat{S}_{kx}^{c,out} = \hat{S}_{kx}^{c,in} + 2\tilde{\kappa}_k \tau \langle \hat{n}_k \rangle \hat{J}_z \hat{J}_z^{c,out} = \hat{J}_z^{c,in} , \quad \hat{J}_y^{out} = \hat{J}_y^{in} + 2\tilde{\kappa}_k \tau \hat{N} \left(\frac{1}{2} \langle \hat{n}_k \rangle + \hat{S}_{kz}^c\right)$$



#### Squeezing by interaction and subsequent measurement of light pulse



QND interaction Hamiltonian

$$\hat{H}_{int} = \hbar 4 \tilde{\kappa} \left( \frac{\hat{n}}{2} + \hat{S}_z^c \right) \hat{J}_z \qquad \Rightarrow$$

$$\hat{S}_{z}^{c,out} = \hat{S}_{z}^{c,in} , \quad \hat{S}_{x}^{c,out} = \hat{S}_{x}^{c,in} + 2\tilde{\kappa}\tau \langle \hat{n} \rangle \hat{J}_{z}$$
$$\hat{J}_{z}^{c,out} = \hat{J}_{z}^{c,in} , \quad \hat{J}_{y}^{out} = \hat{J}_{y}^{in} + 2\tilde{\kappa}\tau \hat{N} \left(\frac{\langle \hat{n} \rangle}{2} + \hat{S}_{z}^{c}\right)$$









### Magnetic dipole transitions btw hyperfine ground states





Optical pumping efficiency: fraction of atoms in Rabi oscillations,