Imperial College London

Thermodynamics of atoms in non-trivial environments

<u>Stefan Yoshi Buhmann</u> and Stefan Scheel *Quantum Optics and Laser Science Blackett Laboratory, Imperial College London, UK* Electronic address: s.buhmann@imperial.ac.uk

Content

- QED effects: Zero vs finite temperature
 - Casimir force
 - Internal atomic dynamics
 - Casimir-Polder force
- Theoretic background: Macroscopic QED
 - Field quantisation
 - Hamiltonian
 - Thermal fields
- Atomic dynamics
 - Transition rates at finite temperature
 - Example: Heating of polar molecules
- Casimir–Polder force
 - Lifshitz theory
 - Microscopic calculation
- Summary

QED effects: Zero vs finite temperature

Zero temperature:

• $\langle \hat{E}^2 \rangle_0 \neq 0$

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

• $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Finite temperature:

• $\langle \hat{E}^2 \rangle_T \neq 0$

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Finite temperature:

• $\langle \hat{E}^2 \rangle_T \neq 0 \rightarrow$ Thermal Casimir force

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Finite temperature:

- $\langle \hat{E}^2 \rangle_T \neq 0 \rightarrow$ Thermal Casimir force
- Nonequilibrium atom \rightarrow (Stimulated) emission,

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Finite temperature:

- $\langle \hat{E}^2 \rangle_T \neq 0 \rightarrow$ Thermal Casimir force
- Nonequilibrium atom \rightarrow (Stimulated) emission, absorption

Imperial College London

QED effects: Zero vs finite temperature

Zero temperature:

- $\langle \hat{E}^2 \rangle_0 \neq 0 \rightarrow \text{Casimir force}$
- Excited atom \rightarrow Spontaneous emission
- $\langle \hat{E}^2 \rangle_0 \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow \text{Casimir-Polder force}$

Finite temperature:

- $\langle \hat{E}^2 \rangle_T \neq 0 \rightarrow$ Thermal Casimir force
- Nonequilibrium atom \rightarrow (Stimulated) emission, absorption
- $\langle \hat{E}^2 \rangle_T \neq 0$, $\langle \hat{d}^2 \rangle \neq 0 \rightarrow$ Thermal Casimir–Polder force

Theoretic background: Macroscopic QED

Imperial College London

Field quantisation

Green tensor of macroscopic Maxwell equations:

$$\left[\nabla \times \frac{1}{\mu(\boldsymbol{r},\omega)} \nabla \times -\frac{\omega^2}{c^2} \varepsilon(\boldsymbol{r},\omega) \right] \mathbf{G}(\boldsymbol{r},\boldsymbol{r}',\omega) = \delta(\boldsymbol{r}-\boldsymbol{r}')$$

Imperial College London

Field quantisation

Green tensor of macroscopic Maxwell equations:

$$\left[\nabla \times \frac{1}{\mu(r,\omega)} \nabla \times -\frac{\omega^2}{c^2} \varepsilon(r,\omega) \right] \mathbf{G}(r,r',\omega) = \delta(r-r')$$

Physical interpretation:

$$\underline{\widehat{E}}(\mathbf{r},\omega) = i\omega\mu_0 \int d^3r' \,\mathbf{G}(\mathbf{r},\mathbf{r}',\omega) \cdot \underline{\widehat{j}}(\mathbf{r}',\omega)$$

Noise current density:

$$\frac{\hat{\boldsymbol{j}}_{\mathsf{N}}(\boldsymbol{r},\omega) = -i\omega\underline{\hat{\boldsymbol{P}}_{\mathsf{N}}(\boldsymbol{r},\omega) + \nabla \times \underline{\hat{\boldsymbol{M}}_{\mathsf{N}}(\boldsymbol{r},\omega)}{= \omega\sqrt{\frac{\hbar\varepsilon_{0}}{\pi}}\operatorname{Im}\varepsilon(\boldsymbol{r},\omega) \hat{\boldsymbol{f}}_{e}(\boldsymbol{r},\omega) + \nabla \times \sqrt{\frac{\hbar}{\mu_{0}\pi}}\frac{\operatorname{Im}\mu(\boldsymbol{r},\omega)}{|\mu(\boldsymbol{r},\omega)|^{2}}\hat{\boldsymbol{f}}_{m}(\boldsymbol{r},\omega)$$

Bosonic dynamical variables:

$$\left[\widehat{f}_{\lambda i}(\mathbf{r},\omega),\widehat{f}_{\lambda' j}^{\dagger}(\mathbf{r}',\omega')\right] = i\hbar\delta_{\lambda\lambda'}\delta_{ij}(\mathbf{r}-\mathbf{r}')\delta(\omega-\omega'), \quad \lambda,\lambda'\in\{e,m\}$$

D.T. Ho, S.Y.B., J. Kästel, L. Knöll, S. Scheel, D.-G. Welsch, PRA 68, 043816 (2003)

Quantised electric field in linear, causal media:

$$\widehat{\boldsymbol{E}}(\mathbf{r}) = \sum_{\lambda=e,m} \int_0^\infty \mathrm{d}\omega \int \mathrm{d}^3 r' \, \mathbf{G}_\lambda(\boldsymbol{r},\boldsymbol{r}',\omega) \cdot \widehat{\boldsymbol{f}}_\lambda(\boldsymbol{r}',\omega) + \mathrm{H.c.}$$

$$\mathbf{G}_{e,m}(\mathbf{r},\mathbf{r}',\omega) = \mathrm{i}\frac{\omega}{c}\sqrt{\frac{\hbar}{\pi\varepsilon_0}} \times \begin{cases} \frac{\omega}{c}\sqrt{\mathrm{Im}\,\varepsilon(\mathbf{r}',\omega)}\,\mathbf{G}(\mathbf{r},\mathbf{r}',\omega)\\ \sqrt{\frac{\mathrm{Im}\,\mu(\mathbf{r}',\omega)}{|\mu(\mathbf{r}',\omega)|^2}} [\boldsymbol{\nabla}'\times\mathbf{G}(\mathbf{r}',\mathbf{r},\omega)]^{\mathrm{T}} \end{cases}$$

D.T. Ho, S.Y.B., J. Kästel, L. Knöll, S. Scheel, D.-G. Welsch, PRA 68, 043816 (2003)

Hamiltonian

$$\hat{H} = \hat{H}_{\mathsf{F}} + \hat{H}_{\mathsf{A}} + \hat{H}_{\mathsf{AF}}$$

Body–field Hamiltonian:

$$\widehat{H}_{\mathsf{F}} = \sum_{\lambda = e,m} \int \mathrm{d}^3 r \int_0^\infty \mathrm{d}\omega \,\hbar\omega \,\widehat{f}_{\lambda}^{\dagger}(\boldsymbol{r},\omega) \cdot \widehat{f}_{\lambda}(\boldsymbol{r},\omega)$$

Atomic Hamiltonian:

$$\hat{H}_{\mathsf{A}} = \sum_{\alpha} \frac{\hat{\boldsymbol{p}}_{\alpha}^{2}}{2m_{\alpha}} + \frac{1}{2\varepsilon_{0}} \int \mathrm{d}^{3}r \hat{\boldsymbol{P}}_{\mathsf{A}}^{2}(\boldsymbol{r})$$

$$\hat{H}_{\mathsf{AF}} = -\hat{d} \cdot \hat{E}(r_{\mathsf{A}})$$

S.Y.B., D.T. Ho, L. Knöll, D.-G. Welsch, PRA 70, 052117 (2004)

Thermal Fields

Thermal density matrix:
$$\hat{\rho}_T = \frac{e^{-H_F/(k_B T)}}{tr[e^{-\hat{H}_F/(k_B T)}]}$$

Thermal Fields

Thermal density matrix: $\hat{\rho}_T = \frac{e^{-\hat{H}_{\mathsf{F}}/(k_{\mathsf{B}}T)}}{\mathsf{tr}[e^{-\hat{H}_{\mathsf{F}}/(k_{\mathsf{B}}T)}]}$

Dynamical variables: $n(\omega) = \frac{1}{e^{\hbar\omega/(k_{\rm B}T)} - 1}$

$$\left\langle \widehat{f}_{\lambda}^{\dagger}(\boldsymbol{r},\omega)\widehat{f}_{\lambda'}(\boldsymbol{r}',\omega')\right\rangle = n(\omega)\delta_{\lambda\lambda'}\delta(\boldsymbol{r}-\boldsymbol{r}')\delta(\omega-\omega')$$

Thermal Fields

Thermal density matrix:
$$\hat{\rho}_T = \frac{e^{-\hat{H}_{\mathsf{F}}/(k_{\mathsf{B}}T)}}{\mathsf{tr}[e^{-\hat{H}_{\mathsf{F}}/(k_{\mathsf{B}}T)}]}$$

Dynamical variables:
$$n(\omega) = \frac{1}{e^{\hbar\omega/(k_BT)} - 1}$$

$$\left\langle \widehat{f}_{\lambda}^{\dagger}(\boldsymbol{r},\omega)\widehat{f}_{\lambda'}(\boldsymbol{r}',\omega')\right\rangle = n(\omega)\delta_{\lambda\lambda'}\delta(\boldsymbol{r}-\boldsymbol{r}')\delta(\omega-\omega')$$

Fluctuation–Dissipation theorem:

$$\begin{split} \left\langle \frac{1}{2} \Big[\Delta \hat{P}_{\mathsf{N}}(\boldsymbol{r},\omega) \Delta \hat{P}_{\mathsf{N}}^{\dagger}(\boldsymbol{r}',\omega') \Big]_{+} \right\rangle &= c(\omega,\omega') \operatorname{Im}[\varepsilon_{0}\varepsilon(\boldsymbol{r},\omega)] \delta(\boldsymbol{r}-\boldsymbol{r}') \\ \left\langle \frac{1}{2} \Big[\langle \Delta \hat{M}_{\mathsf{N}}(\boldsymbol{r},\omega) \Delta \hat{M}_{\mathsf{N}}^{\dagger}(\boldsymbol{r}',\omega') \Big]_{+} \right\rangle &= c(\omega,\omega') \operatorname{Im}[\kappa_{0}\kappa(\boldsymbol{r},\omega)] \delta(\boldsymbol{r}-\boldsymbol{r}') \\ \left\langle \frac{1}{2} \Big[\Delta \hat{E}(\boldsymbol{r},\omega) \Delta \hat{E}^{\dagger}(\boldsymbol{r}',\omega') \Big]_{+} \right\rangle_{T} &= c(\omega,\omega') \mu_{0}\omega^{2} \operatorname{Im} \mathbf{G}(\boldsymbol{r},\boldsymbol{r}',\omega) \\ c(\omega,\omega') &= \frac{\hbar}{2\pi} \left[n(\omega) + \frac{1}{2} \right] \delta(\omega-\omega') \end{split}$$

Atomic dynamics

Coupled atom-field dynamics: $\hat{A}_{mn} = |m\rangle \langle n|, \ \hat{f}_{\lambda}(r, \omega)$

$$egin{aligned} \dot{A}_{mn} &= \mathrm{i}\omega_{mn}\hat{A}_{mn} + rac{\mathrm{i}}{\hbar}\sum_{k}\sum_{\lambda}\int\mathrm{d}^{3}r\int_{0}^{\infty}\mathrm{d}\omegaigl(d_{nk}\hat{A}_{mk} - d_{km}\hat{A}_{kn}igr) \ &\cdotigl[\mathbf{G}_{\lambda}(r_{A},r,\omega)\cdot\widehat{f}_{\lambda}(r,\omega) + \mathrm{H.\,c.}igr] \ &rac{\mathrm{i}}{f_{\lambda}(r,\omega)} &= -\mathrm{i}\omega\widehat{f}_{\lambda}(r,\omega) + rac{\mathrm{i}}{\hbar}\sum_{m,n}d_{mn}\cdot\mathbf{G}_{\lambda}^{*}(r_{A},r,\omega)\widehat{A}_{mn} \end{aligned}$$

Solve: Eliminate field, Markov approximation, $\langle \hat{A}_{mn} \rangle = \sigma_{nm}$

Coupled atom-field dynamics: $\hat{A}_{mn} = |m\rangle \langle n|, \ \hat{f}_{\lambda}(r, \omega)$

$$\begin{split} \dot{\hat{A}}_{mn} &= \mathrm{i}\omega_{mn}\hat{A}_{mn} + \frac{\mathrm{i}}{\hbar}\sum_{k}\sum_{\lambda}\int\mathrm{d}^{3}r\int_{0}^{\infty}\mathrm{d}\omega\left(d_{nk}\hat{A}_{mk} - d_{km}\hat{A}_{kn}\right) \\ &\cdot \left[\mathbf{G}_{\lambda}(\mathbf{r}_{A},\mathbf{r},\omega)\cdot\widehat{\mathbf{f}}_{\lambda}(\mathbf{r},\omega) + \mathrm{H.\,c.}\right] \\ &\hat{\mathbf{f}}_{\lambda}(\mathbf{r},\omega) = -\mathrm{i}\omega\widehat{\mathbf{f}}_{\lambda}(\mathbf{r},\omega) + \frac{\mathrm{i}}{\hbar}\sum_{m,n}d_{mn}\cdot\mathbf{G}_{\lambda}^{*}(\mathbf{r}_{A},\mathbf{r},\omega)\widehat{A}_{mn} \end{split}$$

Solve: Eliminate field, Markov approximation, $\langle \hat{A}_{mn} \rangle = \sigma_{nm}$ **Zero temperature:**

Coupled atom-field dynamics: $\hat{A}_{mn} = |m\rangle \langle n|, \ \hat{f}_{\lambda}(r, \omega)$

$$egin{aligned} \dot{A}_{mn} &= \mathrm{i}\omega_{mn}\hat{A}_{mn} + rac{\mathrm{i}}{\hbar}\sum_{k}\sum_{\lambda}\int\mathrm{d}^{3}r\int_{0}^{\infty}\mathrm{d}\omegaigl(d_{nk}\hat{A}_{mk} - d_{km}\hat{A}_{kn}igr) \ &\cdotigl[\mathbf{G}_{\lambda}(r_{A},r,\omega)\cdot\widehat{f}_{\lambda}(r,\omega) + \mathrm{H.\,c.}igr] \ &rac{\mathrm{i}}{f_{\lambda}(r,\omega)} &= -\mathrm{i}\omega\widehat{f}_{\lambda}(r,\omega) + rac{\mathrm{i}}{\hbar}\sum_{m,n}d_{mn}\cdot\mathbf{G}_{\lambda}^{*}(r_{A},r,\omega)\widehat{A}_{mn} \end{aligned}$$

Solve: Eliminate field, Markov approximation, $\langle \hat{A}_{mn} \rangle = \sigma_{nm}$ **Finite temperature:**

Coupled atom-field dynamics: $\hat{A}_{mn} = |m\rangle\langle n|, \ \hat{f}_{\lambda}(r,\omega)$

$$egin{aligned} \dot{A}_{mn} &= \mathrm{i}\omega_{mn}\hat{A}_{mn} + rac{\mathrm{i}}{\hbar}\sum_{k}\sum_{\lambda}\int\mathrm{d}^{3}r\int_{0}^{\infty}\mathrm{d}\omegaigl(d_{nk}\hat{A}_{mk} - d_{km}\hat{A}_{kn}igr) \ &\cdotigl[\mathbf{G}_{\lambda}(r_{A},r,\omega)\cdot\widehat{f}_{\lambda}(r,\omega) + \mathrm{H.\,c.}igr] \ &rac{\mathrm{i}}{f_{\lambda}(r,\omega)} &= -\mathrm{i}\omega\widehat{f}_{\lambda}(r,\omega) + rac{\mathrm{i}}{\hbar}\sum_{m,n}d_{mn}\cdot\mathbf{G}_{\lambda}^{*}(r_{A},r,\omega)\widehat{A}_{mn} \end{aligned}$$

Solve: Eliminate field, Markov approximation, $\langle \hat{A}_{mn} \rangle = \sigma_{nm}$ **Finite temperature:**

$$\begin{split} \dot{\sigma}_{mm} &= -\sum_{k \neq m} \Gamma_{mk} \sigma_{mm} + \sum_{k \neq m} \Gamma_{km} \sigma_{kk} \\ \Gamma_{mk} &= \frac{2\mu_0}{\hbar} \tilde{\omega}_{mk}^2 d_{mk} \cdot \text{Im } \mathbf{G}(\mathbf{r}_A, \mathbf{r}_A, |\tilde{\omega}_{mk}|) \cdot d_{km} \\ &\times \begin{cases} \left[n(\tilde{\omega}_{mk}) + 1 \right] & \text{for } m > k \\ n(\tilde{\omega}_{km}) & \text{for } m < k \end{cases} \\ \end{split}$$
Steady state: $\sigma_{T,mm} = e^{-\tilde{E}_m / (k_B T)} / \left[\sum_k e^{-\tilde{E}_k / (k_B T)} \right] \end{split}$

Example: Heating of polar molecules

Scenario: Ground-state molecule at distance z_A from gold surface at T = 273K

Example: Heating of polar molecules

Scenario: Ground-state molecule at distance z_A from gold surface at T = 273K

Casimir–Polder force

Imperial College London

Lifshitz Theory

Average Lorentz force: Field in thermal state $\hat{\rho}_T$

$$F = \int_{V} \mathrm{d}^{3}r \left\langle \hat{\rho}(\boldsymbol{r}) \hat{\boldsymbol{E}}(\boldsymbol{r}') + \hat{\boldsymbol{j}}(\boldsymbol{r}) \times \hat{\boldsymbol{B}}(\boldsymbol{r}') \right\rangle_{\boldsymbol{r}' \to \boldsymbol{r}}$$

Lifshitz Theory

Average Lorentz force: Field in thermal state $\hat{\rho}_T$

$$F = \int_{V} \mathrm{d}^{3}r \left\langle \hat{\rho}(\boldsymbol{r}) \hat{\boldsymbol{E}}(\boldsymbol{r}') + \hat{\boldsymbol{j}}(\boldsymbol{r}) \times \hat{\boldsymbol{B}}(\boldsymbol{r}') \right\rangle_{\boldsymbol{r}' \to \boldsymbol{r}}$$

Casimir force: $\xi_N = 2\pi k_{\rm B} T N/\hbar$ $F = -2k_{\rm B}T \int_V {\rm d}^3 r \sum_N' \left\{ \xi_N^2/c^2 \, \nabla \cdot \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}, {\rm i}\xi_N) - {\rm tr} \left[\mathbf{I} \times \left(\nabla \times \nabla \times + \xi_N^2/c^2 \right) \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}', {\rm i}\xi_N) \times \overleftarrow{\nabla}' \right]_{\mathbf{r} = \mathbf{r}'} \right\}$

Lifshitz Theory

Average Lorentz force: Field in thermal state $\hat{\rho}_T$

$$F = \int_{V} \mathrm{d}^{3}r \left\langle \hat{\rho}(\boldsymbol{r}) \hat{\boldsymbol{E}}(\boldsymbol{r}') + \hat{\boldsymbol{j}}(\boldsymbol{r}) \times \hat{\boldsymbol{B}}(\boldsymbol{r}') \right\rangle_{\boldsymbol{r}' \to \boldsymbol{r}}$$

Casimir force: $\xi_N = 2\pi k_{\text{B}} T N/\hbar$ $F = -2k_{\text{B}} T \int_V d^3 r \sum_N' \left\{ \xi_N^2/c^2 \, \nabla \cdot \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}, \mathrm{i}\xi_N) - \mathrm{tr} \left[\mathbf{I} \times \left(\nabla \times \nabla \times + \xi_N^2/c^2 \right) \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}', \mathrm{i}\xi_N) \times \overleftarrow{\nabla}' \right]_{\mathbf{r} = \mathbf{r}'} \right\}$

Casimir–Polder force: $\varepsilon(\omega) = 1 + \eta \alpha(\omega)/\varepsilon_0$

Lifshitz Theory

Average Lorentz force: Field in thermal state $\hat{\rho}_T$

$$F = \int_{V} \mathrm{d}^{3}r \left\langle \hat{\rho}(\boldsymbol{r}) \hat{\boldsymbol{E}}(\boldsymbol{r}') + \hat{\boldsymbol{j}}(\boldsymbol{r}) \times \hat{\boldsymbol{B}}(\boldsymbol{r}') \right\rangle_{\boldsymbol{r}' \to \boldsymbol{r}}$$

Casimir force: $\xi_N = 2\pi k_{\rm B} T N/\hbar$ $F = -2k_{\rm B}T \int_V {\rm d}^3 r \sum_N' \left\{ \xi_N^2/c^2 \, \nabla \cdot \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}, {\rm i}\xi_N) - {\rm tr} \left[\mathbf{I} \times \left(\nabla \times \nabla \times + \xi_N^2/c^2 \right) \mathbf{G}^{(1)}(\mathbf{r}, \mathbf{r}', {\rm i}\xi_N) \times \overleftarrow{\nabla}' \right]_{\mathbf{r}=\mathbf{r}'} \right\}$

Casimir–Polder force: $\varepsilon(\omega) = 1 + \eta \alpha(\omega)/\varepsilon_0$

$$\boldsymbol{F}(\boldsymbol{r}_{A}) = -\mu_{0}k_{\mathsf{B}}T\sum_{N}^{\prime}\xi_{N}^{2}\alpha(\mathrm{i}\xi_{N})\boldsymbol{\nabla}_{A}\operatorname{tr}\mathbf{G}^{(1)}(\boldsymbol{r}_{A},\boldsymbol{r}_{A},\mathrm{i}\xi_{N})$$

Open questions: $\alpha = \alpha_0$? Dynamics? Resonant effects?

Microscopic calculation

Average Lorentz force: Field in thermal state $\hat{\rho}_T$, atom in incoherent state $\hat{\sigma}$

$$F(t) = \int_{V} \mathrm{d}^{3}r \left\langle \widehat{\rho}_{A}(\boldsymbol{r},t) \widehat{\boldsymbol{E}}(\boldsymbol{r},t) + \widehat{\boldsymbol{j}}_{A}(\boldsymbol{r},t) \times \widehat{\boldsymbol{B}}(\boldsymbol{r},t) \right\rangle$$

S.Y.B, L. Knöll, D.-G. Welsch, Ho Trung Dung PRA **70**, 052117 (2004); S.Y.B, S. Scheel, quant-ph/0803.0738

Microscopic calculation

Average Lorentz force: Field in thermal state $\hat{\rho}_T$, atom in incoherent state $\hat{\sigma}$

$$F(t) = \int_{V} d^{3}r \left\langle \hat{\rho}_{A}(\boldsymbol{r},t) \hat{\boldsymbol{E}}(\boldsymbol{r},t) + \hat{\boldsymbol{j}}_{A}(\boldsymbol{r},t) \times \hat{\boldsymbol{B}}(\boldsymbol{r},t) \right\rangle$$
$$= \left\{ \nabla \left\langle \hat{\boldsymbol{d}}(t) \cdot \hat{\boldsymbol{E}}(\boldsymbol{r},t) \right\rangle \right\}_{\boldsymbol{r}=\boldsymbol{r}_{A}}$$

Solve: Use atom-field dynamics (Markov approximation)

S.Y.B, L. Knöll, D.-G. Welsch, Ho Trung Dung PRA **70**, 052117 (2004); S.Y.B, S. Scheel, quant-ph/0803.0738

Microscopic calculation

Average Lorentz force: Field in thermal state $\hat{\rho}_T$, atom in incoherent state $\hat{\sigma}$

$$F(t) = \int_{V} d^{3}r \left\langle \hat{\rho}_{A}(\boldsymbol{r},t) \hat{\boldsymbol{E}}(\boldsymbol{r},t) + \hat{\boldsymbol{j}}_{A}(\boldsymbol{r},t) \times \hat{\boldsymbol{B}}(\boldsymbol{r},t) \right\rangle$$
$$= \left\{ \nabla \left\langle \hat{\boldsymbol{d}}(t) \cdot \hat{\boldsymbol{E}}(\boldsymbol{r},t) \right\rangle \right\}_{\boldsymbol{r}=\boldsymbol{r}_{A}}$$

Solve: Use atom-field dynamics (Markov approximation)

Casimir–Polder force:

$$F(r_A, t) = \sum_m \sigma_{mm}(t) F_m(r_A)$$

S.Y.B, L. Knöll, D.-G. Welsch, Ho Trung Dung PRA **70**, 052117 (2004); S.Y.B, S. Scheel, quant-ph/0803.0738

Atom in eigenstate

Lifshitz result:

$$\boldsymbol{F}(\boldsymbol{r}_{A}) = -\mu_{0}k_{\mathsf{B}}T\sum_{N}^{\prime}\xi_{N}^{2}\alpha(\mathrm{i}\xi_{N})\boldsymbol{\nabla}_{A}\operatorname{tr}\mathbf{G}^{(1)}(\boldsymbol{r}_{A},\boldsymbol{r}_{A},\mathrm{i}\xi_{N})$$

Atom in eigenstate

Macroscopic result: $\hat{\sigma}(t_0) = |m\rangle \langle m|$, perturbative limit

$$F(r_A, t_0) = F(r_A) = -\mu_0 k_{\mathsf{B}} T \sum_N' \xi_N^2 \alpha_m(\mathsf{i}\xi_N) \nabla_A \operatorname{tr} \mathbf{G}^{(1)}(r_A, r_A, \mathsf{i}\xi_N)$$
$$+ \frac{\mu_0}{3} \sum_{k < m} \omega_{mk}^2 [n(\omega_{mk}) + 1] |d_{mk}|^2 \nabla_A \operatorname{tr} \operatorname{Re} \mathbf{G}^{(1)}(r_A, r_A, \omega_{mk})$$
$$- \frac{\mu_0}{3} \sum_{k > m} \omega_{mk}^2 n(\omega_{km}) |d_{mk}|^2 \nabla_A \operatorname{tr} \operatorname{Re} \mathbf{G}^{(1)}(r_A, r_A, \omega_{km})$$

Atom in eigenstate

Macroscopic result: $\hat{\sigma}(t_0) = |m\rangle \langle m|$, perturbative limit

$$F(r_A, t_0) = F(r_A) = -\mu_0 k_{\mathsf{B}} T \sum_N' \xi_N^2 \alpha_m(\mathsf{i}\xi_N) \nabla_A \operatorname{tr} \mathbf{G}^{(1)}(r_A, r_A, \mathsf{i}\xi_N)$$

$$+ \frac{\mu_0}{3} \sum_{k < m} \omega_{mk}^2 [n(\omega_{mk}) + 1] |d_{mk}|^2 \nabla_A \operatorname{tr} \operatorname{Re} \mathbf{G}^{(1)}(r_A, r_A, \omega_{mk})$$

$$- \frac{\mu_0}{3} \sum_{k > m} \omega_{mk}^2 n(\omega_{km}) |d_{mk}|^2 \nabla_A \operatorname{tr} \operatorname{Re} \mathbf{G}^{(1)}(r_A, r_A, \omega_{km})$$

Polarisability:
$$\alpha_m(\omega) = \lim_{\epsilon \to 0} \frac{2}{3\hbar} \sum_k \frac{\omega_{km} |d_{mk}|^2}{\omega_{km}^2 - \omega^2 - i\omega\epsilon}$$

Resonant forces: Photon emission/absorption, opposite sign, different distance dependence

\Rightarrow Possible deviation from Lifshitz result!

Fully thermalised atom

Steady-state force: $\hat{\sigma}(t \to \infty) = \hat{\sigma}_T$ \rightarrow Cancellation of resonant forces

$$F(r_A, t \to \infty) = -\mu_0 k_{\mathsf{B}} T \sum_N' \xi_N^2 \alpha_T(\mathsf{i}\xi_N) \nabla_A \operatorname{tr} \mathbf{G}^{(1)}(r_A, r_A, \mathsf{i}\xi_N)$$

Fully thermalised atom

Steady-state force: $\hat{\sigma}(t \to \infty) = \hat{\sigma}_T$ \rightarrow Cancellation of resonant forces

$$\boldsymbol{F}(\boldsymbol{r}_A, t \to \infty) = -\mu_0 k_{\mathsf{B}} T \sum_N' \xi_N^2 \boldsymbol{\alpha}_T(\mathsf{i}\xi_N) \nabla_A \operatorname{tr} \mathbf{G}^{(1)}(\boldsymbol{r}_A, \boldsymbol{r}_A, \mathsf{i}\xi_N)$$

Polarisability:
$$\alpha_T(\omega) = \sum_m \sigma_{T,mm} \alpha_m(\omega)$$

Resonant forces: Non-equilibrium effect

 \Rightarrow Agreement with Lifshitz result if correctly intepreted!

Summary

Atomic dynamics

- Transition rates for emission $(\propto n+1)$ and absorption $(\propto n)$
- *Thermal state* as steady state
- *Example:* Heating of polar molecules near gold surface

Summary

Atomic dynamics

- Transition rates for emission $(\propto n+1)$ and absorption $(\propto n)$
- *Thermal state* as steady state
- *Example:* Heating of polar molecules near gold surface

Casimir–Polder forces

- Atom in eigenstate: Resonant force components
 ⇒ Deviation from Lifshitz theory!
- Thermalised atom: Lifshitz result with α_T

Summary

Atomic dynamics

- Transition rates for emission $(\propto n+1)$ and absorption $(\propto n)$
- Thermal state as steady state
- Example: Heating of polar molecules near gold surface

Casimir–Polder forces

- Atom in eigenstate: Resonant force components
 ⇒ Deviation from Lifshitz theory!
- Thermalised atom: Lifshitz result with α_T

What remains to be done

- Generalise to non-uniform temperature
- Consider different geometries

Summary

Atomic dynamics

- Transition rates for emission $(\propto n+1)$ and absorption $(\propto n)$
- *Thermal state* as steady state
- Example: Heating of polar molecules near gold surface

Casimir–Polder forces

- Atom in eigenstate: Resonant force components
 ⇒ Deviation from Lifshitz theory!
- Thermalised atom: Lifshitz result with α_T

What remains to be done

- Generalise to non-uniform temperature
- Consider different geometries

Open position: Research Associate/Assistant @ Imperial College http://www3.imperial.ac.uk/employment/research